ΤΑΞΗ Γ

ΘΕΤΙΚΉ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΉ ΚΑΤΕΥΘΎΝΣΗ

2ο Τρίωρο Διαγώνισμα Σχολικό Ετος 2004-2005

Καθηγητής: Ν.Σ. Μαυρογιάννης

ZHTHMA 1

Έστω η συνάρτηση $\varphi(x) = 2x^3 - 15x^2 + 24x + 1$

1. Να μελετήσετε την φ ως προς την μονοτονία και τα ακρότατα.

9 MONA Δ E Σ

2. Να βρείτε το πλήθος των ριζών της φ .

8 MONA Δ E Σ

3. Να βρείτε το σύνολο τιμών $\varphi([0,5])$ της φ στο διάστημα [0,5].

8 MONA Δ E Σ

ZHTHMA 2

Έστω η συνάρτηση $f(x) = e^x + e^{-x} - x^2 - 2$.

1. Να αποδείξετε ότι η γραφική παράσταση της f στρέφει τα κυρτά προς τα κάτω σε όλο το \mathbb{R} .

9 MONA Δ E Σ

2. Να βρείτε το όριο $\lim_{x\to 0} \left(\frac{f(x)}{x^4}\right)$.

8 MONA Δ E Σ

3. Να υπολογίσετε το ολοκλήρωμα $\int f(x) dx$.

8 MONA Δ E Σ

ZHTHMA 3

1. Έστω $g:[\alpha,\beta]\to\mathbb{R}$ συνεχής και τέτοια ώστε $g(x)\geq 0$ για όλα τα $x\in[\alpha,\beta]$. Να αποδείξετε ότι αν ισχύει $\int_{\alpha}^{\beta}g(x)\,dx=0$ τότε θα ισχύει g(x)=0 για όλα τα $x\in[\alpha,\beta]$.

10 MONA Δ E Σ

- 2. Έστω $f:[0,1] \to \mathbb{R}$ μία συνεχής συνάρτηση για την οποία ισχύουν:
 - $\int_0^1 (f^2(x) 1)^2 dx = 0$
 - Υπάργει $x_0 \in [0,1]$ ώστε $f(x_0) > 0$.
 - (α') Να αποδείξετε ότι η f είναι σταθερή.

10 MONA Δ E Σ

(β') Να υπολογίσετε το $\int_0^1 f(x) dx$.

5 MONA Δ E Σ

ZHTHMA 4

Έστω $f: [\alpha, \beta] \to \mathbb{R}$ μία συνάρτηση η οποία είναι δύο φορές παραγωγίσιμη με f''(x) > 0 για όλα τα $x \in [\alpha, \beta]$.

1. Έστω $x_1, x_2 \in [\alpha, \beta]$ με $x_1 < x_2$ και $y = \lambda x + \kappa$ η εξίσωση της ευθείας η οποία διέρχεται από τα σημεία $M_1(x_1, f(x_1))$ και $M_2(x_2, f(x_2))$. Να αποδείξετε ότι για κάθε $x \in [x_1, x_2]$ ισχύει $f(x) \le \lambda x + \kappa$.

10 MONA Δ E Σ

2. Έστω (ε_1) η ευθεία που διέρχεται από τα σημεία $A(\alpha, f(\alpha))$ και $B(\beta, f(\beta))$. Να αποδείξετε ότι υπάρχει ακριβώς μία εφαπτομένη (ε_2) της \mathcal{C}_f η οποία είναι παράλληλη στην (ε_1) .

10 MONA Δ E Σ

- 3. Με (ε_1) και (ε_2) να είναι οι ευθείες του προηγουμένου ερωτήματος ονομάζουμε:
 - E_1 το εμβαδόν του χωρίου που περικλείεται από τις ευθείες (ε_1) , $x=\alpha, x=\beta$ και την \mathcal{C}_f .

• E_2 το εμβαδόν του χωρίου που περικλείεται από τις ευθείες (ε_2) , $x=\alpha,\,x=\beta$ και την $\mathcal{C}_f.$

Nα αποδείξετε ότι $E_1 \geq E_2$.

5 MONA Δ E Σ